Prolonged glucocorticoid exposure dephosphorylates histone H1 and inactivates the MMTV promoter.
نویسندگان
چکیده
Glucocorticoids rapidly induce transcription from the mouse mammary tumour virus (MMTV) promoter via a glucocorticoid receptor (GR)-mediated chromatin disruption event. This remodelling of chromatin is transient such that upon prolonged exposure to hormone the promoter becomes refractory to glucocorticoids. We demonstrate that this refractory state requires the continual presence of hormone and can be reversed by its removal. Our experiments show that the promoter is inactivated via a mechanism whereby histone H1 is dephosphorylated in response to glucocorticoids. Removal of glucocorticoids results in the rephosphorylation of histone H1 and the reacquisition of transcriptional competence by the promoter. This response is specific for the MMTV promoter assembled as chromatin and is not observed for another inducible gene or transiently transfected MMTV DNA. Finally, we demonstrate that H1 on the MMTV promoter is dephosphorylated when the promoter is unresponsive to glucocorticoids. These studies indicate that phosphorylated H1 is intimately linked with the GR-mediated disruption of MMTV chromatin in vivo.
منابع مشابه
Hormone-mediated dephosphorylation of specific histone H1 isoforms.
We have previously shown a connection between histone H1 phosphorylation and the transcriptional competence of the hormone inducible mouse mammary tumor virus (MMTV) promoter. Prolonged exposure of mouse cells to dexamethasone concurrently dephosphorylated histone H1 and rendered the MMTV promoter refractory to hormonal stimulation and, therefore, transcriptionally unresponsive. Using electrosp...
متن کاملOverproduction of histone H1 variants in vivo increases basal and induced activity of the mouse mammary tumor virus promoter.
BALB/c 3T3 cell lines containing integrated copies of the MMTV promoter driving a reporter gene were constructed. Expression vectors in which either of two H1 variants, H10 or H1c, were under control of an inducible promoter were introduced into these lines. Surprisingly, overproduction of either variant resulted in a dramatic increase in basal and hormone-induced expression from the MMTV promo...
متن کاملHistone H1 enhances synergistic activation of the MMTV promoter in chromatin.
Minichromosomes assembled on the mouse mammary tumor virus (MMTV) promoter in vitro exhibit positioned nucleosomes, one of which covers the binding sites for progesterone receptor (PR) and nuclear factor 1 (NF1). Incorporation of histone H1 into MMTV minichromosomes improves the stability of this nucleosome and decreases basal transcription from the MMTV promoter, as well as its response to eit...
متن کاملOsmotic stress-dependent repression is mediated by histone H3 phosphorylation and chromatin structure.
Histone H3 phosphorylation has been linked to various environmental stress responses and specific chromatin structure. The role of H3 phosphorylation in the osmotic stress response was investigated on the mouse mammary tumor virus (MMTV) promoter in different chromatin configurations. Hormone-dependent transcription from the MMTV promoter is repressed by osmotic stress when the promoter is inte...
متن کاملFrom DEPARTMENT OF CELL AND MOLECULAR BIOLOGY Karolinska Institutet, Stockholm, Sweden CHROMATIN STRUCTURE AND HISTONE MODIFICATIONS IN GENE REGULATION
In the living cell, DNA is densely packed into a chromatin structure constituting nucleosomal arrays. One nucleosome core particle includes a disc shaped protein octamer consisting of pairs of histones H2A, H2B, H3 and H4. 146bp of DNA is wrapped in almost two turns around this protein complex. The N-terminal tails of the histone proteins protrude out from the nucleosome core. These tails are h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 17 5 شماره
صفحات -
تاریخ انتشار 1998